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ABSTRACT 

The nonlinear decay of a disturbance was calculated by an i terative solution to the 
Navier-Stokes equations. The general  expressions obtained for successive approxima- 
tions were suitable for machine computations, within the limitations of the computer ca- 
pacity. For the initial condition, a three-dimensional cosine distribution with two har- 
monic t e r m s  was assumed. The nonlinear interaction of these harmonic t e r m s  then 
produced new harmonics. As the i teration process  proceeded, a large number of har- 
monics, a t  wave numbers higher than, lower than, or the s a m e  a s  the original ones 
were generated. This process  appeared to be similar to that occurring in  the ear ly  
s tages  of the development of turbulence by flow through a grid.  
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NONLlNEAR DECAY OF A DISTURBANCE IN AN UNBOUNDED VISCOUS FLUID 

by Robert  G. Deiss ler  

Lewis Research C e n t e r  

SUMMARY 

The nonlinear decay of a disturbance w a s  calculated by an iterative solution to the 
Navier-Stokes equations. 
tions were suitable for machine computations, within the limitations of the computer ca- 
pacity. 
monic t e rms  was  assumed. The nonlinear interaction of these harmonic t e rms  then 
produced new harmonics. A s  the iteration process proceeded, a large number of har- 
monics, at wave numbers higher than, lower than, or the same as the original ones 
were generated. This process appeared to be similar to that occurring in  the early 
stages of the development of turbulence by flow through a grid. 

The general expressions obtained for successive approxima- 

For the initial condition, a three-dimensional cosine distribution with two har- 

INTRODUCTION 

A fundamental problem in fluid mechanics is to predict what happens to a disturb- 
ance in a viscous fluid. 
a first step in  understanding the dynamics of turbulence. 
indication of the ear ly  stages of the development of turbulence from a regular disturb- 
ance, such as that produced by the flow of a fluid through a grid. 

velocity distribution, obtained successive approximations for the velocity as a function of 
position and time by substituting known approximations into the Navier- Stokes equations. 
The results, which showed that small  eddies can be generated from larger  ones, were 
limited to small  t imes and to the first few approximations for velocities. Jain (ref. 2) 
obtained similar resul ts  by using the initial conditions from reference 1 in a numerical 
finite-difference solution of the Navier- Stokes equations. 

In this analysis, an initial three-dimensional cosine velocity distribution, which is 
more convenient to work with than that of Taylor and Green, is used to obtain iterative 
solutions of the Navier-Stokes equations. Of particular importance is the fact that these 

Besides being of interest  in  itself, the problem is important as 
In particular, it should give an 

Taylor and Green (ref. l), starting with an initial three-dimensional sine-cosine 

I. 



initial conditions can be conveniently used with the compact Cartesian-tensor form of the 
Navier-Stokes equations. Analytical expressions are first obtained-for the first three 
approximations. In each approximation, the linear t e rms  of the Navier- Stokes equations 
are considered as unknown, and the nonlinear te rms  as known from the preceding ap- 
proximation. General expressions are then obtained which give the te rms  in an approxi- 
mation of any order  in te rms  of those in the preceding approximation. By using these 
expressions, a computer can be programmed to generate successively higher-order ap- 
proximations from lower-order ones. It will later be seen that, in this process, new 
harmonics o r  eddy s izes  are generated from existing ones. As the order of the approxi- 
mation increases,  the Reynolds number for which the solution is applicable increases.  
Accordingly, the upper Reynolds number for which the solution is applicable will be lim- 
ited only by the computer capacity. Thus, the scope of the solution that can be feasibly 
obtained will be increased over that which could be obtained by carrying out the itera- 
tions algebraically by hand. The basic equations for the analysis will be considered in 
the next section. 

B A S K  EQUATIONS AND INITIAL CONDITIONS 

The following is considered: given the initial velocity distribution in an unbounded 
viscous fluid, predict the motion at later times. The equations of motion for a viscous 
fluid with constant properties are, in dimensionless form, 

where 

2 
p = -  xo p* 

2 
PV 

2 



2 
xO 

The quantity UT is a velocity component, x: is a space coordinate, xo is a character- 
is t ic  length, t* is the time, p is the density, and v is the kinematic viscosity. (Note: 
stars on dimensional quantities a r e  omitted on corresponding dimensionless quantities. 
Symbols are defined in  the appendix.) The subscripts in equations (1) and (2) can take on 
the values 1, 2, o r  3, and a repeated subscript in a t e r m  indicates a summation. To ob- 
tain an explicit equation for the pressure, the divergence of equation (1) is applied to  the 
continuity equation (2) to  get 

In the remainder of the analysis, it will be convenient to  use the set of equations (1) 
and (3), rather than (1) and (2). 

The expression assumed for the initial disturbance is, in dimensionless form, 

(4) 0 0 ui = a. cos q .  x'+ bi C O S  F . x' 
1 

where 

0 xo o* 
l v  

b. = - b  0 xo o* 
l v  

a. = - a. i 1 

-* F = x  r s'= x0q* 0 

O* and b:* a r e  initial velocity amplitudes or Fourier coefficients of the disturbance, 

- x' and r'. x' a r e  
In order to satisfy the continuity condi- 

ai 
and c* and F* a r e  initial wave number vectors. 
dot products (i. e . ,  q . x = q x I + q2x2 + q3x3). 
tion (2), the a's, b's, q 's ,  and 1"s in equation (4) must be related by 

The quantities - -  

3 



and 

0 b. r. = 0 
1 1  

J 

Equation (4) could be generalized to include any number of similar harmonic terms.  
It represents the simplest expression that can give nonzero pressure and inertia t e rms  
when substituted into equations (1) and (3). It can be readily verified that, i f  only one 
t e rm of equation (4) were used, the continuity conditions (5) would require the pressure 
and inertia t e rms  ( terms on right side of eq. (1)) to be zero, so  that nonlinear effects 
would be absent. Because the present study is mainly concerned with nonlinear effects, 
two harmonic t e r m s  a r e  included in  equation (4). 

ANALYSIS FOR FIRST THREE APPROXIMATIONS 

As a first approximation for ui at any time 

u. 1 1  = a. cos c. x'+ b. 1 cos r'. x' ( 6) 

where ai and bi are functions of time, the forms for which will be determined from 
the equations of motion. The form of equation (6) has been chosen so that it will reduce 
to equation (4) for t = 0. 

Substituting equation (6) into the right side of (3)  yields 

For obtaining equation (7) and subsequent equations, the following identities are used: 

1 
2 

sin A sin B = -[cos(A - B) - cos(A + B)] 

sin A cos B = -[sin(A 1 - B) + sin(A + Br] 
2 

(9) 

4 



1 
2 

COS A COS B = -[cos(A - B) + COS(A + B)] 

1 
2 2 2 

(qi + ri) + - (a.q b + birQaQ) i Q P  
Q bQr kak + -  

4 + 2 q Q r Q + r  

In order  to  be consistent with equations (3) and (7), it is assumed that 

p = a cos($ - r') - x'+ b cos($+ E.') - x' (11) 

Substituting equations (7), ( l l ) ,  and (5) into (3) and equating coefficients of like cosine 
t e rms  yield 

where q and r a r e  the magnitudes of the initial wave number vectors $ and r'(i. e.,  
q = qiqi). 2 Substituting equations (6) and (8) to (13) into the right side of (1) gives 

1 - - -  aP a(uiuk) = qQbQrk% (qi - ri) + - 1 (aiqQbQ - birgaP) s in(T-  r') - x 
axk q2 - 2qQrp + r 2 2 

L 2 

r 

L 

sin($+ r') . x' (14) 

In order to be consistent with equations ( l ) ,  (4), and (14), it is assumed that, for  the 
second approximation for ui, 

u. 1 = ai cos $ -  x'+ bi cos r'. x'+ ci s i n ( c -  E.') . x'+ di sin($+ E.') . x' (15) 

From the continuity condition (2) and equation (15), 

a.q. = 0 
1 1  
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b.r. = 0 
1 1  

c.(q. - r.) = 0 
1 1  1 

$(qi + ri) = 0 

To solve equation (1) by iteration, it is assumed that the linear viscous t e rm 
2 

2 
a ui/axkaxk, as well as i3ui /at ,  is unknown at each stage of the iteration. Considering 

a ui/axkaxk as unknown should give a more accurate answer than would be obtained by 
considering it as known from the preceding approximation, as has been done in previous 
work. It will be shown that the present scheme gives a ser ies  of negative exponentials 
in time, rather than a power series,  as was obtained in reference 1. Substituting equa- 
tions (15) and (14) into the left and right sides of equation ( l ) ,  respectively, gives, after 
equating coefficients of like sine and cosine terms, 

2 a ai 
- + q  a i=O 
at 

Using the initial condition (4) yields 

0 -q 2 t 
a. = a. e 
1 1  

Similarly, 

2 
(17) 

0 -r t b. = b. e 
1 1  

The use of equations (16) and (17) in the right side of equation (1) (i. e . ,  eq. (14)) 
then gives 

2 - b!rpa:) 

- 

6 



or, again by use of initial condition (4), 

c . = - -  2erkb;qQ (qi - ri) + ai 0 0  bgqg - b:a!r] 
2 - 2qQrg + r 

1 

Similarly, 

0 0  

2 2 
d. = ___ 1 [- 'kr kbQqQ (qi + ri) + ai 0 0  bQqp + b:a!r] 
1 

4qkrk q + 2qQrg + r 

The third approximation is obtained in  similar fashion by substituting the second approx- 
imation into the right sides of equations (1) and (3). 

The first, second, and third approximations for ui may be summarized as follows: 

First approxi mation: 

2 2 
u. = a. e -q cos c .  x'+ bye-' cos r'. x' 
1 1  

Second approximation: 

7 



2 2 
cos s' - x'+ b;e-' u. = a. e -q cos r' - x' 

1 1  

Third approxi mation: 

k(dlqJdkqk 0 + d4q4bkqk)qi 0 0  - - ( bodoq i k k + dpb:qkg {- 
2 2r2 

(Cont. on next  page) 

8 



(Cont. on next page) 
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0 0  
2aQr Qbkqk (qi + ri) + ai 0 0  bkqk + b!airk] 

q 2 + 2qkrk 4- 2 

2 -  2 
-(4q -4qkrk+r )t 

- e  X 

-c cos(2q'- F) * x 
(-2q 2 +2qkrk-r 2 )t -(4q 2 -4qkrk+r 

- e  t 1 
2 -  

2q - 2qkrk 

(Cont. on next page) 
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(-2q 2 -2qkrk-r 2 I t  -(4q2+4qkrk+r 2 -  )t 
- e  

- 1 

(qi - 2ri) - - 
2 

"1 -(q 2 -4qkrk+4r )t 
x I-- 

1 

(Conc. on next page) 

11 



- 
2 2  2 (-2q -2r  )t - .-4r t e 

2 2  -q + r 

0 where a: and bi a r e  given by the initial condition (4), and 

0 0  
(qi - ‘i) + ai bQqQ - 

2 
0 c. = - -  
1 (24) 

0 0  hi + ri) + ai bQqp + 
2 

It is evident that the number and complexity of t e rms  in  the expression for ui in- 
crease rapidly as the order  of the approximation increases.  This happens because each 
t e r m  in a particular approximation is multiplied by every other one when it is substituted 
into the nonlinear t e rms  of equations (1) and (3); that is, each sine o r  cosine te rm inter- 
acts  with every other one to produce more terms.  If, on the other hand, the nonlinear 
t e r m s  in  equations (1) and (3) were neglected (low Reynolds number), the first approxi- 
mation (eq. (21)) would be an exact solution of (1) and (3).  

12 
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GENERAL EXPRESSIONS FOR NONLINEAR PRODUCTION OF HARMONICS 

Because of the proliferation of new harmonic t e rms  as the order of the approxima- 
tion increases, it appears impracticable to generate approximations much higher than 
the third analytically. Rather, it would seem better to obtain general expressions for 
the new t e rms  produced by the interaction of pairs  of harmonic t e rms  in a particular ap- 
proximation. 
approxtmations from preceding ones. These general expressions for the nonlinear inter- 
action of pairs  of harmonic t e rms  will be considered next. 

shows that they are of the general form 

It should then be possible to program a computer to generate successive 

Examination of the t e r m s  in  the first three approximations for ui (eqs. (21) to (23)) 

where 

and 

The superscripts s and c appear i n  coefficients of sine and cosine terms,  respectively. 
The indices z, q, and r take on as many values as a r e  required to represent the t e rms  
of the particular approximation. 

each t e rm of equation (26) is multiplied by (or interacts with) every other term. 
sine - sine, sine - cosine, and cosine - cosine products must be considered. Consider, 
first, the t e rms  generated by the interaction of two t e rms  

When equation (26) is substituted into the nonlinear t e rms  of equations (1) and (3), 
Thus, 

and (29) 

13 



Thus, the sum 

where 

is substituted for ui in  the right sides of equations (3) and (1). The manipulations a r e  
s imilar  to those used for obtaining the first and second approximations in  the last sec- 
tion. Because it is necessary to obtain the additive contribution to ui, which resul ts  
f rom the interaction of the two harmonic t e rms  in equation (30), ui is replaced on the 
left side of equation (1) by u c , 2  

condition on u C , ~  U. c92 - is set  equal to zero when t = 0. (Initial condition (4) will 

be satisfied later when the totality of t e rms  contributing to ui is considered. ) The ex- 
pression for u?,: - is, then, 

which represents that contribution. For the initial 
i, n, m' 

1, n, Z' 1, n, m 

1,  "9 m 

-(bz, r+bi, ,$ - 
X e  sin(n'- 6) . 2 

n 2 - 2nkmk + m2 - b!. - bc  
m , r  n , q  

-(b?., .+bC )t -(n2+nkmk+m2)t 
s in (<+  15) . i n , q  - e  X e  .. 

n2 + 2nkmk + m2 - b!. - b c  
m , r  n , q  (33) 

14 



Similarly, the interaction of t e r m s  like 

A s  - sin n'. x' 
1, n 

and 

where 

and 

resul ts  in  

S 2 m a S ,  n a  
S - a. - m a  Q Q , n , q k k , ' , r ( n . - m . ) + a s  n a S 

n2 - 2nkmk + m 
1 1 i , < , q k k , G , r  i , m , r  kk ,n ' , q  

( 34) 

2 

- sin(ii - G) . x' 
x re-($, -. I .  qib%, r)t - e-b -2nkmkf m2)q 

n2 - 2nkmk + m2 - b, S - b?. 1 n ,q  m7r 

-@, q+b?+, .)t - e-(n 2 +2nkmk+m2).] 

s in( i i+ E) x' 
2 S n + 2nkmk + m2 - b- - b 5  

n,q  m , r  
(37) 

15 



Finally, the interaction of t e r m s  like 

and 

where A s  , and AC + are defined by equations (34) and (30), resul ts  in 
1 7  n 1 7  m 

n2 - 2nkmk + m2 - b? - b 5  
n7q m , r  

J l 2  n7q m , r  
2 s  n + 2nkmk + m - b, - b 5  

The successive approximations to the velocity components ui may now be calcu- 
Tf the vth approximation is known, equations (33), (37), and (39) give contribu- lated. 

tions to the v + lSt approximation, which a r e  due to the presence (or interaction) of 
pairs  of harmonic t e rms  in  the vth approximation. Thus, i f  the vth approximation for 
ui is given by 

16 



+ . . . + . . . +A! , cos I% x'+ AS + sin I% - x'+ . . . (40) 
1, m 1 7  m 

then the v + lSt approximation is 

2 2 
+us,: ,+. . . + a . e  -q cos x'+ bye-' cos r'. x' (41) i, m, n 1 

where the u! ), , I s  are given by the equations (33), (37), and (39) 
1 7  n7 m 

The last two te rms  in  equation (41) are the first approximation (eq. (21)) and are in- 
cluded in equation (41) because, whereas every other t e rm is regenerated at each stage 
in  the iteration process, the t e r m s  of the first approximation are not so regenerated. 
That is the case because of the assumed initial condition u c 7 2  - = 0 when t = 0. The i ,  n, m 

0 0 same result could be obtained by letting uc72 = ai cos q .  x'+ bi cos r' x' at t = 0 
1, "7 m 

when the two interacting t e r m s  include the first approximation. 
to use equation (33) throughout as it stands and to include the first approximation ir, equa- 
tion (41). 

In obtaining equation (41) f rom (40), the presence (or interaction) of each pair of 

However, it is simpler 

I \  

harmonic te rms  in equation (40) produces a t e r m  u! I-. -. in (41). Thus, each te rm in 
1 7  m, n 

equation (40) interacts once with every other term.  
(2) (see also eq. (5)) no contributions are obtained by the interaction of a t e r m  with it- 
self. 
will have (s - 1) + (s - 2) + . . . + 1 = (s/2)(s - 1) contributions, like u( I-. , plus the 
first approximation. 

With the velocity components ui known to some degree of approximation, the 
space-averaged values of u! can be calculated. Because ui is given by equation (26), 
squaring, integrating over a cycle, and using the orthogonality property of sines and co- 
sines result in 

Because of the continuity condition 

Thus, i f  there are s te rms  in the vth approximation, the v + lSt approximation 

i, n, m7 

17 
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RESULTS AND DISCUSSION 

If the velocity distribution in a fluid is given by a sum of harmonic t e rms  as in equa- 
tion (26), then the presence (or nonlinear interaction) of each pair of t e rms  produces new 
harmonics given by equations (29) to  (39). Each pair of t e r m s  then present interacts to 
produce still more harmonic t e rms  or eddy sizes.  It is evident that there will  result  a 
very large number of eddy sizes,  or a situation resembling turbulent flow. It should be 
pointed out that, because of wave number vectors n"- r% and n"+ I%, which occur, for 
instance, in  equation (33), the generated harmonics can have either higher o r  lower wave 
numbers than the original ones. Moreover, when some of the generated harmonics in- 
teract  with the original ones, new harmonics can be generated with the same wave num- 
bers  as the original ones. 

produced, for example, by flow through a grid with equal spacings. It has been pointed 
out ear l ier  that because of continuity, harmonics of the same wave number and/or inten- 
si ty vectors will not interact nonlinearly. However, i f  there a r e  small  random disturb- 
ances in  the flow upstream of the grid or small  imperfections in the grid, the eddies 
produced by the grid will not be identical; therefore, they can interact to produce new 
harmonics. 
imperfections, the resulting flow will be random or  turbulent. 

a function of dimensionless time. First, second, third, and fourth approximations a r e  
shown. 
values of a:, b!, qi, and ri a r e  shown in the figure. The values of the initial vectors 
were chosen to satisfy continuity and to give nonzero interaction t e rms  (a. q. = b. r. = 0, 
airi # 0, and biqi # 0). Disturbances having three different initial intensities are com- 
pared. The first approximation (eq. (21)) gives the linear decay that occurs when the 
nonlinear o r  inertia t e rms  in  the Navier-Stokes equation are neglected. 

One might ask how a random turbulence could develop from a regular disturbance 

Because of the random nature of the small  upstream distrubances, o r  grid 

Figure 1 shows calculated kinetic energy per unit mass  for a disturbance plotted as 

The initial condition for the disturbance is given by equation (4), where the 

0 0 
1 1  1 1  0 0 

Comparison of 
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Approximation 
First (l inear decay) 
Second 

---_ 
-- 
- Third and fourth 

(nonlinear decay) 

I 

0 ,005 ,010 ,015 ,020 ,025 ,030 ,035 . WO 
Dimensionless time, t 

(a) Weaker disturbance Ini t ia l  dimensionless Fourier coefficients: 
a 1  = MU, -1, -2,); bp- 8M1, -2. -1). 

45x103 ,- 

Approximation 

First ( l inear decay) 
Second 

Third 
Fourth 

---- 
-- 
--- 

----_ 
1 

0 .005 ,010 .015 .020 .025 ,030 ,035 .@IO 
Dimensionless time, t 

Approximat ion 

First (l inear decay) 
Second 

Third 

Fourth 

---- 
-- 
--- 

R 

10 

5 

0 ,005 . O l O  ,015 ,020 .025 .OM .035 ,040 
Dimensionless time, t 

(b) Moderate disturbance. In i t ia l  dimensionless Fourier coefficients: (c) Stronger disturbance. In i t ia l  dimensionless Fourier coefficients: 
a!= 3M1, -1, -2); by = 12N1, -2, -1). a f=  40(1, -1, -2); by = 160(1, -2, -1). 

Figure 1. -Time decay of mean kinetic energy per unit mass. Components Of in i t ia l  wave number vectors: qi = (4,2,1); ri = 2(4,1,2). 



the nonlinear with the linear solutions shows that the nonlinear effects cause the disturb- 
ances to decay more slowly. It is noted that a s imilar  resul t  is obtained for random 
turbulent flow. Strongly nonlinear turbulence decays approximately as t-l, whereas the 
decay law for linear turbulence is closer to t . 

Comparison of the various approximations indicates that at large times, higher 
order  approximations are required for the iteration process to  converge (as indicated by 
the agreement of the third and fourth approximations) than are required at smaller times. 
Larger values of the initial intensity parameters indicate convergence only at small  
t imes for the first four approximations. On the other hand, smaller values of the initial 
intensity show convergence even at very large t imes.  The poorer convergence of a given 
approximation at larger  intensities is, of course, due to the stronger inertia effects that 
occur at high Reynolds numbers; therefore, higher approximations a r e  required to take 
them into account. 

the ratios u2 ’/? and u:/T a r e  plotted against dimensionless time in figure 2. The 
case shown corresponds to that in figure l(b). 
with those in figure 2 shows that the third and fourth approximations in the curves in fig- 
ure  2 converge for a smaller range of dimensionless t imes than do those of figure 1. 
Evidently, a given order approximation at a time t is less accurate for the individual 
components than i t  is for the total energy. Comparison of the first (linear approxima- 

tion for u i / u ;  and for u”,/u? shows that the ratios can either increase or  decrease 
with time because the different components decay viscously at different rates, depending 
on the initial conditions. 

-5/2 

To show how the energy is distributed among the various directional components, 
- - 

Comparison of the curves in figure l (b)  

- -  - _  

Approximation 

---- First ( l inear)  
Th i rd  
Four th 

--- 

4, 

Dimensionless time, t 

F igure 2 -Va r ia t i on  of mean square velocity component 
rat ios w i th  time. In i t i a l  dimensionless wave number  
vec to rk  q i  = (4,2, 1); ri = 2(4, 1, 2). I n i t i a l  d imension-  
I ss Four ier  coeff icients a? = 30(1, -1, -2); 4 = 120(1, -2, -1). Moderate disturbance. 

20 



The fourth (nonlinear) approximations show the same general trends as the first approxi- 
mations, but the nonlinear effects tend to bring the ratios closer to one (this is also t rue 

for u3 u ); that is, the nonlinear effects tend to make the disturbance more isotropic. 

kinetic energy spectra were calculated from equation (42) and plotted against dimension- 
l e s s  wave number K in  figure 3. 
u r e  1. 
has converged (see fig. 1).  For t = 0, there are,  of course, only two spikes o r  har- 
monics in  the spectrum because of the assumed initial condition (eq. (4)). 
t imes shown, particularly for the stronger disturbances, a large number of other har- 

2/T 
2 

To show how various harmonics contribute to the kinetic energy of the disturbance, 

The cases  shown here a r e  the same as those in fig- 
Results are given for  several  dimensionless t imes for which the iteration process 

For the later 

t Spike for i n i t i a l  
disturbance 

k '  
(a) Weaker disturbance. In i t ia l  time, t = 0. 

=- Ini t ia l  dimensionless Fourier coefficients: 
5 
- 

a?= 20(1, -1, -2); b y =  80(1, -2, -1). 
01 0 

Spike for i n i t i a l  t disturbance 

I .O 

480 

240 

160 

I 

Spike for nonl inear decay 1 ( fou r th  approximation) 

f 
Spike for l inear decay 

I , ( f i rst  approximation) 
I 

(b) Weaker disturbance. Time, t = 0.02. In i t ia l  dimensionless Fourier coef- 
ficients: a: = 20(1, -1, -2);  by=  80(1, -2, -1). 

2.0~103 

I l l  

1 Spike for nonl inear decay 

4 Spike for l inear decay 
I ( f i rst  approximation) 

( f ou r th  approximation) 

0 5 10 
Dimensionless wave number, K 

15 20 25 30 35 40 45 

(c) Moderate disturbance. In i t ia l  time, t = 0. (d) Moderate disturbance. Time t = 0.02. In i t ia l  dimensionless Fourier coef- 
In i t ia l  dimensionless Four ier  coefficients: 
a! = 30(1, -1, -2); by= lM(1, -2, -1). 

ficients; a! = 30(1, -1, -2); bf = 120(1, -2, -1). 

Figure 3. - Spectrum of mean kinet ic energy per unit mass. Components of i n i t i a l  wave number vectors: qi - (4.2.1); q - 2(4.1,2). 
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4 I 1 Spike for i n i t i a l  
disturbance 

1 Spike for nonl inear decay 
(fourth approximation) 

4 Spike for l inear decay 
i ( f i r s t  approximation) 

~ 

0 5 10 0 5 10 15 20 25 30 35 40 45 
Dimensionless wave number, IC 

(f) Stronger disturbance. Dimensionless time, 0.01. In i t ia l  dimension- b -  (e) Stronger disturbance. In i t ia l  time, t = 0. 
I i t ia l  dimensionless Four ier  coefficients: 
a?= 40(1. -1, -2); by- 160(1, -2, -1). 

less Fourier coefficients: a! = 40(1. -1, -2); bi = 160(1, -2, -1). 

Figure 3. -Concluded. 

monics have developed because of the interaction between contributions at various wave 
numbers. Although some of the generated harmonics are strong, many of them are too 
weak to have an appreciable effect on the disturbance, s o  that their  representations l ie 
close to the horizontal axis. By increasing the strength of the disturbance, more of the 
harmonics will have appreciable strengths. However, the fourth approximation will then 
not be sufficient to obtain convergence of the iterative process.  Unfortunately, the com- 
puter used for the calculations did not have enough storage capacity to car ry  out the ap- 
proximations higher than the fourth. 

For comparison with the nonlinear resul ts  just discussed, the spikes for the linear 
solution a r e  shown dashed in figures 3(b), (d), and (f). In this case, no new harmonics 
a r e  generated. The original harmonics simply decay independently. Comparison of the 
solid and dashed lines shows that the harmonics at the original wave numbers a r e  greatly 
affected by nonlinear interactions; that is, many of the eddies, generated o r  destroyed 
by nonlinear effects, have the same wave numbers as those in  the original disturbance. 
It might be mentioned that, in order for that to occur, it is necessary to go to at least  
the third approximation because the second approximation produces only contributions 
that a r e  at higher or lower wave numbers than the original ones (eq. (22)).  

Although the harmonics generated by nonlinear effects can occur at either high o r  
low wave numbers, most of the significant generated harmonics in the calculated results,  
particularly those for the weaker disturbances, tend to lie in the low wave number re- 
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gion. The difficulty of generating significant harmonics at the higher wave numbers ap- 
pears  to  be related to  the fact that viscous effects in the high wave number region tend to 
prevent their formation. As the disturbance strength increases, however, the tendency 
to  form significant harmonics in the higher wave number region appears to  increase. 

CONCLUDING REMARKS 

An initial three-dimensional disturbance consisting of two harmonics can decay non- 
linearly and generate new harmonics at wave numbers greater than, smaller than, or  the 
same as, those of the original harmonics. If either the wave number vectors or  the am- 
plitude vectors of the two initial harmonics have the same direction, however, the conti- 
nuity condition requires that there be no interaction. In that case or if nonlinear effects 
are ignored by neglecting the inertia te rms  in the Navier-Stokes equation, the original 
harmonics will simply decay independently. 

At low 
Reynolds numbers there is, of course, no significant difference between the linear and 
nonlinear solutions. 

The ratios of the directional components of the mean square velocities changed with 
time. This was caused by differences in  the rates of viscous (linear) decay of the vari- 
ous directional components and by transfer of energy between the components by non- 
linear action. Whereas the viscous effects could change the component ratios in either 
direction (depending on the initial conditions) the nonlinear effects always tended to  bring 
the ratios closer to one o r  to  make the disturbance more isotropic. 

accurate at small t imes and/or small Reynolds numbers of the disturbance. 
time or the Reynolds number increased, the order of the approximation that w a s  required 
to obtain convergence of the iterative process increased. 

The generation of a range of harmonics in the early stages of the development of 
turbulence by flow through a grid appears to be similar to the production of harmonics in 
the present analysis. 
because of small random disturbances in the flow upstream of the grid or small imper- 
fections in the grid. Random harmonics are then generated as a result of the interaction 
of the slightly different intensities and wave numbers of the disturbances in the flow from 
the grid. 

In general, nonlinear effects cause the disturbance to decay more slowly. 

For a given approximation, the iterative solution for the nonlinear case was most 
A s  either 

Random turbulence can evidently develop by flow through a grid 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 9, 1968, 
129-01-05-20-22. 
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APPENDIX - SYMBOLS 

S C AC -, A. -, Ai, --, 
‘ l , K  l ) K  

AC , As -,As , 
i, m’ 1, n 1, m 

C S C a. -. ,a .  a. -. 
a. , a. a. 

1, K ,  q 1,K,  r ’  1, n, q’ 
C S S 
1, m, r’ 1, n, q’ 1, m, r 

o* o* 
ai 9 bi 

* *  
ai 7 bi 

a*, b* 

C S C b, b, b, 
K ,  q’ K ,  r’ n, q’ 

S S b% b, b, 
m, r’ n,q’ m, r 

m, n 

dimensionless Fourier coefficients for velocity components, 
xoAC*-/u 

1, K 

Fourier coefficients for velocity component 

dimensionless Fourier coefficients for pressure fluctuation, 
x:a*/pv 2 2  , xob*/pv2 (see eq. (11)) 

dimensionless Fourier coefficients for velocity component, 
xoa:/v, xobit/u, etc. (see eqs. (6) and (15)) 

constants given by eqs. (27), (28), (31), (32), (35), and (36) 

initial dimensionless Fourier coefficients for velocity com- 
ponents, x a v and xobi v (see eq. (4)) 

initial Fourier coefficients for velocity components 
O i  ”*/ ”/ 

Fourier coefficients for  velocity component 

Fourier coefficients for pressure fluctuation 

constants given by eqs. (27), (28), (31), (321, (35), and (36) 

magnitudes of dimensionless wave number vectors 

components of dimensionless wave number vectors, x m* 0 i ’  
x n* O i  

components of wave number vectors 

dimensionless wave number vectors 
dimensionless pressure, xop*/pv 2 2 

pressure 

components of initial dimensionless wave number vectors, 
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ui 
UT 

uc72 -c us,: + us72 -r 
i ,n,  m' i 7 n 7  m' i ,n ,  m 

xi 
* 

X. 
1 

X 
+ 

xO 

K'* 

K 

V 

P 

Super scripts: 

C 

S 

* 

components of initial wave number vectors 

initial dimensionless wave number vectors 

dimensionless time, vt*/x 

ti me 

component of dimensionless velocity, xOuT / v  

component of velocity 

2 
0 

interaction te rms  given by eqs. (33), (37), and (39) 

0 dimensionless position coordinate, xT/x 

position coordinate 

dimensionless position vector 

characteristic length 

dimensionless wave number vector, x ,T* 

wave number vector 

kinematic viscosity 

density 

0 

cosine t e rms  

sine t e rm 

dimensional quantities 

aver aged quantities 
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